
CSS 434
Program 1: Two Chat Systems

Professor: Munehiro Fukuda
Due date: see the syllabus

1. Purpose
This assignment learns how to use Java-based TCP communication through a design of
chat client and server program. We also implement consistent ordering in broadcasting
messages from one client to all the others through a central server as well as causal
ordering in exchanging messages among clines without using central server.

2. Message Ordering
As we study in the class, we need to distinguish several message ordering schemes
depending on distributed applications. These include absolute ordering, consistent
ordering, causal ordering, and first-in-first-out ordering (listed here from the tightest to
the loosest consistency). Although absolute ordering is accurate to keep track of who
spoke first and who responded second in Internet chatting, it needs a global clock among
clients, which is almost impossible over Internet. Therefore, we implement consistent
ordering and causal ordering.

In consistent ordering, messages are simply delivered in the same order to each client
regardless of their stamp. This means, although message A was created before message B,
message B may be delivered to all chat participants first, but it is guaranteed that all users
receive message B and thereafter message A. We use a centralized algorithm to
implement this consistent ordering. More specifically, each chat client needs to contact a
central chat server that then broadcasts the client message to all the clients, in which
manner the server works as a focal point of consistent message ordering.

In causal ordering, a message is delivered to each receiver before it receives all the
subsequent messages generated by the third party. For this purpose, each computing node
maintains a vector of stamps, each counting send/receive events at node i. (where 0 <= i
< #hosts). When a sender sends a message, it also includes its own vector stamp in the
message. The receiver receives the message only when all stamps in the source j’s vector
are smaller or equal to those in the receiver’s vector except stamp j in the source j’s
vector is one larger than that in the receiver’s vector.

Part I: Chats in Consist Order
A. Chat Client
A chat client program should be invoked with arguments such as a client name, a server
IP name, and a server port:

[css434@uw1-320-20 hw1]$ java ChatClient mickey uw1-320-10 12345

The client program establishes a socket connection to the server, generates a parit of data
input and output streams from this connection, sends its client name with writeUTF(),
and finally goes in an infinitive loop where it repeats reading a new keyboard input, (i.e.,
stdin) if there is any, writing this message to the server, checking if there is a new
message arrived from the server, and displaying it to the display, (i.e., to stdout). If the
client detects EOF through stdin, it leaves this loop and terminates itself. The following
shows the client program, (ChatClient.java):

/**
 * ChatClient.java:<p>
 * realizes communication with other clients through a central chat server.
 *
 * @author Munehiro Fukuda (CSS, University of Washington, Bothell)
 * @since 1/23/05
 * @version 2/5/05
 */
import java.net.*; // for Socket
import java.io.*; // for IOException

public class ChatClient {
 private Socket socket; // a socket connection to a chat server
 private InputStream rawIn; // an input stream from the server
 private DataInputStream in; // a filtered input stream from the server
 private DataOutputStream out; // a filtered output stream to the server
 private BufferedReader stdin; // the standart input

 /**
 * Creates a socket, contacts to the server with a given server ip name
 * and a port, sends a given calling user name, and goes into a "while"
 * loop in that:<p>
 *
 *
 * forward a message from the standard input to the server
 * forward a message from the server to the standard output
 *
 *
 * @param name the calling user name
 * @param server a server ip name
 * @param port a server port
 */
 public ChatClient(String name, String server, int port) {

 // Create a scoket, register, and listen to the server
 try {
 // Connect to the server
 socket = new Socket(server, port);
 rawIn = socket.getInputStream();

 // Create an input, an output, and the standard output stream.
 in = new DataInputStream(rawIn);
 out = new DataOutputStream(socket.getOutputStream());
 stdin = new BufferedReader(new InputStreamReader(System.in));

 // Send the client name to the server
 out.writeUTF(name);
 while(true) {
 // If the user types something from the keyboard, read it from
 // the standard input and simply forward it to the srever
 if (stdin.ready()) {
 String str = stdin.readLine();

 // no more keyboard inputs: the user typed ^d.
 if (str == null)
 break;
 out.writeUTF(str);
 }

 // If the server gives me a message, read it from the server
 // and write it down to the standard output.
 if (rawIn.available() > 0) {
 String str = in.readUTF();
 System.out.println(str);
 }
 }
 // Close the connection. That's it.
 socket.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * Usage: java ChatClient <your_name> <server_ip_name> <port>
 *
 * @param args Receives a client user name, a server ip name, and its port
 * in args[0], args[1], and args[2] respectively.
 */
 public static void main(String args[]) {
 // Check # args.
 if (args.length != 3) {
 System.err.println("Syntax: java ChatClient <your name> " +
 "<server ip name> <port>");
 System.exit(1);
 }

 // convert args[2] into an integer that will be used as port.
 int port = Integer.parseInt(args[2]);

 // instantiate the main body of ChatClient application.
 new ChatClient(args[0], args[1], port);
 }
}

The code is very simple. It checks the number of arguments, and instantiates a ChatClient
object that implements the above algorithm. There are some Java specific classes you
should be reminded of:

InputSteam This is a byte-streamed socket input. To read messages from an

established socket, you must first obtain this object through
getInputStream() from the socket. Messages must be bytes.

OutputStream This is a byte-streamed socket output. To write messages to an
established socket, you must first obtain this object through
getOutputStream() from the socket. Messages must be bytes.

DataInputStream This filters a given InputStream object, so that you can receive
messages in any primitive types other than bytes. The readUTF()
reads in a string that has been encoded using a modified UTF-8
format.

DataOutputSteam This filters a given OutputStream object, so that you can send
messages in any primitive types other than bytes. The writeUTF()
writes in a string that has been encoded using a modified UTF-8
format.

B. Chat Server
A chat server program should be invoked with one argument, namely a server port:

[css434@uw1-320-20 hw1]$ java ChatServer 12345

The server program establishes a server socket with a given port and creates a list of
client connections that is of course empty at the beginning. Thereafter, the server goes
and remains in an infinite loop where it repeats the following operations:
(1) Accept a new client socket connection if there is any,
(2) Read the client name with readUTF(),
(3) Add this connection into the list of existing client connections.
(4) For each connection of the list,
 (a) Receive a new message with readUTF() if there is any,
 (b) Add the client name in front of the message received.

(c) Write this message to all clients through all connections of the list. Use
writeUTF().
(d) Check if any errors have occurred when reading and writing a message. If so,
remove this connection from the list.

The server program is not shown, because it is your assignment. ☺ The following gives
some programming hints:

(1) Java ServerSocket Class
Use the ServerSocket(int port) constructor when instantiating a server socket.
The accept() is a blocking call as default. However, we do not want to be blocked
upon accept(). Use setSoTimeout(500) so that the accept() can return in
500msec. When calling accept(), you have to use try{ }
catch(SocketTimeoutExeception e) { }. Whenever returning from accept(),
check if the return value has a reference to a new socket or null. If it has a
reference, you got a new connection and thus can add it to a list of connections.

(2) Connection Class
I recommend you should design your Connection class whose instance can
maintain a client socket connection and provide readMessage() and
writeMessage() functions. They are used to read a new message with readUTF()
and write a message with writeUTF(). When an error has occurred in a message
read and/or a write, record this error, so that you can delete this connection later.

Again, readUTF() is a blocking call as default. Make sure that the socket has
some data to read through readUTF() before actually calling readUTF(). For this

purpose, Use the available() of the InputStream() class that you should obtain
from the socket.

C. Statement of Work
Design and code ChatServer.java according to the above server specification. Compile
your ChatServer.java and the professor’s ChatClient.java (located in the uw1-320:
~css434/hw1/ directory). Run them as follows:

(1). Choose four different machines in uw1-320.
(2). Start ChatServer first on one of these machines.
(3). Run ChatClient on each of the other three machines with a different client name such
as mickey, mini, and goofy or whatever you like.
(4). Test if a client message is broadcast through the server to all the clients.
(5). Take an execution snapshot. (Type “import –window root X.jpeg” at an xterm, show
X.jpg with firefox, and print it out to uw1-320-p1.)

Part 2. Chats in Causal Order
A. Serverless Chat Client
This program named Chat.java does not use a central server. All computing nodes have to
do is just run this chat client with the same arguments:

[css434@uw1-320-20 hw1]$ java Chat 12345 uw1-320-20 uw1-320-21 uw1-320-22

The first argument is the IP port, (i.e. the last five digits of your student ID) used to
establish a TCP connection to each remote computing node. The following arguments are
a list of computing nodes that participate in the same chatting session. The order of
computing nodes must be the same at each node.

The main function verifies the arguments and instantiates a Chat class. The constructor
first creates a complete TCP network among all computing nodes. To broadcast a local
message to all the other chat members, we repeat sending the message to each of
ObjectOutputStreams, outputs[i] where 0 <= i < #hosts, (i.e., hosts.length). To receive a
message from a remote chat member, we read a message from an ObjectInputStream,
inputs[i]. The following shows the message broadcasting and receiving portion of this
serverless client program, (Chat.java):

// now goes into a chat
while (true) {
 // read a message from keyboard and broadcast it to all the others.
 if (keyboard.ready()) {
 // since keyboard is ready, read one line.
 String message = keyboard.readLine();
 if (message == null) {
 // keyboard was closed by "^d"
 break; // terminate the program
 }
 // broadcast a message to each of the chat members.
 for (int i = 0; i < hosts.length; i++)
 if (i != rank) {
 // of course I should not send a message to myself

 outputs[i].writeObject(message);
 outputs[i].flush(); // make sure the message was sent
 }
 }

 // read a message from each of the chat members
 for (int i = 0; i < hosts.length; i++) {
 // to intentionally create a misordered message deliveray,
 // let's slow down the chat member #2.
 try {
 if (rank == 2)
 Thread.currentThread().sleep(5000); // sleep 5 sec.
 } catch (InterruptedException e) {}

 // check if chat member #i has something
 if (i != rank && indata[i].available() > 0) {
 // read a message from chat member #i and print it out
 // to the monitor
 try {
 String message = (String)inputs[i].readObject();
 System.out.println(hosts[i] + ": " + message);
 } catch (ClassNotFoundException e) {}
 }
 }
}

B. Creating a miss-ordered delivery
Look at the code snippet in blue above. It delays the third chat member, (i.e., rank 2) for
5 seconds. This prevents the third chat member from receiving messages from the others
in the causal order. For instance, let’s assume that the first chat member writes “Go
skiing?” and thereafter the second chat member responds “Yes”.

[css434@uw1-320-20 hw1.new]$ java Chat 12345 uw1-320-20 uw1-320-21 uw1-320-22
port = 12345, rank = 0, localhost = uw1-320-20
accepted from uw1-320-21.uwb.edu
accepted from uw1-320-22.uwb.edu
Go skiing?
Uw1-320-21: Yes

css434@uw1-320-21 hw1.new]$ java Chat 12345 uw1-320-20 uw1-320-21 uw1-320-22
port = 12345, rank = 1, localhost = uw1-320-21
accepted from uw1-320-22.uwb.edu
connected to uw1-320-20
uw1-320-21: Go skiing?
Yes

css434@uw1-320-22 hw1.new]$ java Chat 12345 uw1-320-20 uw1-320-21 uw1-320-22
port = 12345, rank = 1, localhost = uw1-320-21
connected to uw1-320-22
connected to uw1-320-21
uw1-320-21:Yes
uw1-320-20: Go skiing?

As shown above, the third chat member (at uw1-320-22) mistakenly receives “Yes” first
and “Go skiing?” which is not the causal order.

C. Statement of Work
Insert additional code into Chat.java to implement the causal ordering so that all chat
members can receive a message before its subsequent messages generated by the third
party. For instance, “Go skiing?” and “Yes” messages should be printed out in this order
at all computing nodes like:

[css434@uw1-320-20 hw1.new]$ java Chat 12345 uw1-320-20 uw1-320-21 uw1-320-22
port = 12345, rank = 0, localhost = uw1-320-20
accepted from uw1-320-21.uwb.edu
accepted from uw1-320-22.uwb.edu
Go skiing?
Uw1-320-21: Yes

css434@uw1-320-21 hw1.new]$ java Chat 12345 uw1-320-20 uw1-320-21 uw1-320-22
port = 12345, rank = 1, localhost = uw1-320-21
accepted from uw1-320-22.uwb.edu
connected to uw1-320-20
uw1-320-21: Go skiing?
Yes

css434@uw1-320-22 hw1.new]$ java Chat 12345 uw1-320-20 uw1-320-21 uw1-320-22
port = 12345, rank = 1, localhost = uw1-320-21
connected to uw1-320-22
connected to uw1-320-21
uw1-320-20: Go skiing?
uw1-320-21:Yes

In your implementation, each computing node must maintain a vector of stamps, where
each element i counting send/receive events at node i. Before broadcasting a new
message, the local host should increment its corresponding element of the vector. It
should send the message as well as the vector. Whenever receiving a new message from a
sender j, your have to also receive this sender’s vector and compare its contents with the
local vector contents. The comparison must be achieved as follows:

For each element i, if i == j, the sender’s vector[i] must be one larger than the local host’s
vector[i]. Otherwise the sender’s vector[i] must be smaller than or equal to the local
host’s vector[i].

If these conditions are satisfied, you can accept and print out the message as incrementing
the local host’s vector[j]. Otherwise, keep this message and vector in a waiting list, and
check it later when you receive another message.

Note that you must not modify any original code statements. All you can do is add
your new code into Chat.java.

After implementing your causal-ordered chat client, run it as follows:

(1). Choose three different machines in uw1-320.
(2). Run Chat on each of the other three machines
(3). Test if they exchange messages in the causal order with the above scenario: “Go
skiing?” and “Yes”.
(4). Take an execution snapshot. (Type “import –window root X.jpeg” at an xterm, show
X.jpg with firefox, and print it out to uw1-320-p1.)

3. What to Turn in
The homework is due at the beginning of class on the due date. You have to submit the
following materials in a soft copy to “CollectIt for Homework”. Your soft copy should
include:

(1) Your report in PDF or MS Word
(2) Source code (either within your report or separate .java files)
(3) Execution outputs (either withing your report or separate .jpg/.pdf/.tif/.txt files)

The grader’s preference is all in one report.

Criteria Grade
Documentation of your algorithm including explanations and
illustrations in one or two pages.

(1) Part 1 Algorithm (consistent ordering): 2.5pts
(2) Part 2 Algorithm (causal ordering): 2.5pts

5pts

Source code that adheres good modularization, coding style, and an
appropriate amount of comments.

(1) Part 1: ChatServer.java
a. A use of non-blocking accept (0.5pts)
b. A use of non-blocking read (0.5pts)
c. Total ordering maintained (0.5pts)
d. Code completeness (0.5pts)
e. Coding style and readability (0.5pts)

(2) Part 2: Chat.java
a. A use of vector messages (0.5pts)
b. A correct delivery check of vector messages (0.5pts)
c. A correct queue to maintain vector messages (0.5pts)
d. Code completeness (0.5pts)
e. Coding style and readability (0.5pts)

5pts

Execution output such as a snapshot of your display/windows or
contents of standard output redirected to a file.

(1) Part 1's outputs: 2.5pts
a. A plenty of correct results receive 2.5pts
b. Insufficient and/or minor errors receive 2pts
c. Incomplete results receive 1.5pts

5pts

d. No outputs receive 0pts
(2) Part 2's outputs: 2.5pts

a. A plenty of correct results receive 2.5pts
b. Insufficient and/or minor errors receive 2pts
c. Incomplete results receive 1.5pts
d. No outputs receive 0pts

Discussions about the efficiency of your algorithm and possible
performance/functional improvement in one page.

(1) Part 1 Algorithm (consistent ordering)
a. Algorithm efficiency (1pt)
b. Performance and functional improvement (1.5pts)

(2) Part 2 Algorithm (causal ordering)
a. Algorithm efficiency (1pt)
b. Performance and functional improvement(1.5pts)

5pts

Total 20pts

Your lab1a and lab1b will be graded together with program 1. For each lab,
Source code 0.5pts
Outputs 0.5pts

